Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Microbiol ; 14: 1118264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032887

RESUMEN

Background: The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. Methods: To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. Results: A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. Conclusion: Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978419

RESUMEN

Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC ß-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here.

3.
Sci Total Environ ; 876: 162649, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906027

RESUMEN

The emergence and dissemination of mobile colistin resistance (mcr) genes across the globe poses a significant threat to public health, as colistin remains one of the last line treatment options for multi-drug resistant infections. Environmental samples (157 water and 157 wastewater) were collected in Ireland between 2018 and 2020. Samples collected were assessed for the presence of antimicrobial resistant bacteria using Brilliance ESBL, Brilliance CRE, mSuperCARBA and McConkey agar containing a ciprofloxacin disc. All water and integrated constructed wetland influent and effluent samples were filtered and enriched in buffered peptone water prior to culture, while wastewater samples were cultured directly. Isolates collected were identified via MALDI-TOF, were tested for susceptibility to 16 antimicrobials, including colistin, and subsequently underwent whole genome sequencing. Overall, eight mcr positive Enterobacterales (one mcr-8 and seven mcr-9) were recovered from six samples (freshwater (n = 2), healthcare facility wastewater (n = 2), wastewater treatment plant influent (n = 1) and integrated constructed wetland influent (piggery farm waste) (n = 1)). While the mcr-8 positive K. pneumoniae displayed resistance to colistin, all seven mcr-9 harbouring Enterobacterales remained susceptible. All isolates demonstrated multi-drug resistance and through whole genome sequencing analysis, were found to harbour a wide variety of antimicrobial resistance genes i.e., 30 ± 4.1 (10-61), including the carbapenemases, blaOXA-48 (n = 2) and blaNDM-1 (n = 1), which were harboured by three of the isolates. The mcr genes were located on IncHI2, IncFIIK and IncI1-like plasmids. The findings of this study highlight potential sources and reservoirs of mcr genes in the environment and illustrate the need for further research to gain a better understanding of the role the environment plays in the persistence and dissemination of antimicrobial resistance.


Asunto(s)
Antibacterianos , Colistina , Colistina/farmacología , Antibacterianos/farmacología , Aguas Residuales , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Klebsiella pneumoniae , Plásmidos , Pruebas de Sensibilidad Microbiana
4.
J Appl Microbiol ; 133(5): 3150-3160, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35993276

RESUMEN

AIMS: The aim was to exploit whole genome sequencing (WGS) to assess genomic diversity, identify virulence genes and deduce the proportion of Campylobacter colonized broilers that directly contaminate their carcasses. METHODS AND RESULTS: Campylobacter jejuni isolates (107) from caeca and carcass neck skin samples (50 pairs from the same batch plus 7 individual caeca) sampled at three poultry slaughterhouses over a one-year period were selected for sequencing (MiSeq; Illumina). FastQ files were submitted to BioNumerics for analysis using the wgMLST scheme for allele calling. Campylobacter cgMLST and hierarchical clustering was performed by applying the single linkage algorithm. Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into clonal complexes (CCs) using the Campylobacter PubMLST.org database. Virulence genes were determined by downloading core sequences from the virulence factor database (VFDB) and the National Center for Biotechnology Information (NCBI). A high degree of diversity was observed with 23 different STs identified. ST257 and CC-21 were the most common STs and CCs, respectively. cgMLST analysis suggested that 56% of carcass contamination was a direct result of contamination from caeca from the same batch. Virulence genes known to play a role in human C. jejuni infection were identified such as the wlaN gene and the genes associated with lipooligosaccharide synthesis, which were identified in 30% of isolates. CONCLUSIONS: Caecal colonization was the more plausible occurring source of C. jejuni contamination of broiler carcasses, compared with cross-contamination from another batch or the environment. The high rate of genetic diversity observed amongst caecal isolates is consistent with a wide variety of Campylobacter strains circulating in poultry flocks in Ireland. SIGNIFICANCE AND IMPACT OF STUDY: The results will further inform broiler processors and regulators about the influence and importance of on-farm colonization versus slaughterhouse cross-contamination and the relationship between C. jejuni in caeca and carcasses during processing.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Animales , Humanos , Campylobacter jejuni/genética , Mataderos , Aves de Corral , Virulencia/genética , Pollos , Infecciones por Campylobacter/veterinaria , Secuenciación Completa del Genoma , Genómica , Factores de Virulencia/genética
5.
Ir Vet J ; 75(1): 9, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538509

RESUMEN

BACKGROUND: In Ireland, meat by-products (MBP) harvested at knackeries from farmed animals that have not died of an infectious or systemic disease are legally permitted to be fed to dogs in kennels and packs of hounds. There is limited information available on the risks of spreading foodborne bacteria or antimicrobial resistant (AMR) determinants to dogs, their handlers or the associated environment. The aim of this study was to investigate the distribution of Salmonella serovars, Listeria monocytogenes, Campylobacter species, enterococci, their associated AMR determinants and the level of Escherichia coli in samples of MBP from knackeries and associated equipment and kennels. For this purpose, 313 fresh and 208 frozen MBP samples from 22 knackeries, 16 swabs of mincing equipment from two of the knackeries and 138 swabs from kennels adjacent to seven of the knackeries were collected and processed over a 12-month period. RESULTS: From the 521 MBP samples analysed, a total of 77 Salmonella (14.8%), 101 L. monocytogenes (19.4%), 12 Campylobacter (2.3%), 271 Enterococcus faecalis (52.0%) and 127 Enterococcus faecium (24.4%) strains were recovered. The 154 analysed environmental samples from kennels and mincing equipment yielded 194 isolates (3 Salmonella, 85 E. coli, 76 E. faecalis and 30 E. faecium.). E. coli was quantifiable in 423 of the 521 MBP samples with log counts per gram ranging between 1 and 6. AMR characterisation of 168 E. coli, enterococci and Salmonella isolates from MBP and environmental samples showed high levels of AMR including multi-drug resistance (MDR) with 63.6%, 9.1%, 29% and 45.8% of E. coli, Salmonella, E. faecalis and E. faecium isolates, respectively showing resistance to three or more antimicrobials (MDR) CONCLUSIONS: The findings of this survey confirm that MBP from fallen animals contain high levels of zoonotic and AMR-harbouring bacteria that pose a risk of transmission to dogs, their handlers, and the environment.

6.
Ir Vet J ; 75(1): 4, 2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35249551

RESUMEN

BACKGROUND: Salmonella is an important zoonotic pathogen and is one of the main causes of foodborne outbreaks and infections in the European Union. Pigs are a significant reservoir and are frequently subclinical carriers of this organism. Salmonella can be shed in the faeces allowing infection to spread to other pigs, the environment, transport vehicles, lairages and other areas. Inadvertent spillage of gut contents during the slaughter process also leads to contamination. A pig Salmonella control programme has operated in Ireland since 2002 but many local surveys and an EUMS baseline survey in 2008 continued to indicate high levels of the organism in the pig sector. The objectives of this study were to generate updated information on the prevalence of Salmonella spp, in slaughter pigs and carcasses in Irish abattoirs. Five pigs from each of 164 herds were randomly sampled over a 14-week period during 2016. One sample from each of the five pigs of; caecal content, ileo-caecal lymph nodes and carcass swabs (pre-chill) were collected. The five caeca and lymph node samples from each herd were processed as one pool of caecal samples and one pool of lymph node samples, respectively, while the five carcass swabs were tested as individual samples. All isolates were characterised by serotyping and antimicrobial susceptibility. RESULTS: In total, 235 Salmonella spp. were isolated from 820 individual carcass swabs, 164 pooled lymph nodes and 164 caecal contents. Salmonella spp. were isolated from 54.3% of the caecal contents and from 31.7% of the ileo-caecal lymph node sample pools. A total of 11.5% of carcass-swab samples yielded Salmonella spp. S. Typhimurium 4,[5],12:i:1,2 or its monophasic variant 4,[5],12:i:-: predominated among isolates from all positive samples; accounting for 73% of lymph nodes, 68% of caecal contents and 56% of carcass swab isolates. S. London and S. Derby were the next most common isolated serotypes. CONCLUSIONS: These results confirm continuing high levels of Salmonella in fattening pigs in Ireland although reductions in carcass contamination compared to previous surveys were noted. A high prevalence of Salmonella in lymph nodes suggests that it remains a significant problem pre slaughter and a challenge to abattoirs in adhering to process hygiene requirements. The high prevalence of monophasic S. Typhimurim 4,[5],12:i:-: is of serious concern. Therefore, it is important to identify contributing factors in the dissemination of this pathogen in the pork industry in order to minimise the risk of human salmonellosis cases.

7.
Sci Total Environ ; 806(Pt 3): 151269, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710415

RESUMEN

This study investigated the ability of Integrated Constructed Wetlands (ICWs) to remove critically important antimicrobial resistant organisms (AROs) from farm wastewater. Influent samples from the untreated farm waste and effluent samples taken at the end of the ICW system were collected monthly from four ICWs, serving four different farm types (suckler, dairy, dairy & poultry and pig). Using selective media to screen for the presence of carbapenemase resistant organisms, plasmid mediated and AmpC ß-Lactamase producing organisms (ESBL/pAmpC) and fluoroquinolone resistant organisms, a total of 82 AROs were obtained with the majority being E. coli (n = 79). Statistically significant were the differences on the number of AROs isolated from influent (higher) compared to effluent, as well as a seasonal effect, with less AROs recovered during winter in comparison to other seasons (P < 0.05). On the other hand, there was no significant differences in the recovery of AROs on different farms. The majority of isolates from each of the farms (99%) were multi drug resistant, with 65% resistant to seven or more antimicrobials. A high incidence of tetracycline, trimethoprim/sulfamethoxazole, and ampicillin resistance was common to the isolates from all four farms but there were differences in ESBL levels with 63% of the isolates recovered from Farm 4 (piggery) being ESBLs compared to 18%, 36% and 4.5% recovered from Farms 1 (suckler), 2 (dairy) and 3 (dairy & poultry), respectively. No carbapenemase producing organisms were isolated. Our results showed that ICWs are effective in removing critically important AROs from farm wastewater on all four farm types.


Asunto(s)
Enterobacteriaceae , Escherichia coli , Animales , Antibacterianos , Proteínas Bacterianas , Granjas , Porcinos , Humedales , beta-Lactamasas
8.
Zoonoses Public Health ; 69(1): 1-12, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716745

RESUMEN

Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from poultry, dairy and beef cattle, the environment and people with clinical salmonellosis globally. However, the sources of this serovar and its diversity and antimicrobial resistance capacities remain poorly described in many regions. To further understand the genetic diversity and antimicrobial sensitivity patterns among S. Kentucky strains isolated from non-human sources in Ireland, we sequenced and analysed the genomes of 61 isolates collected from avian, bovine, canine, ovine, piscine, porcine, environmental and vegetation sources between 2000 and 2016. The majority of isolates (n = 57, 93%) were sequence type (ST) 314, while only three isolates were ST198 and one was ST152. Several isolates were multidrug-resistant (MDR) and 14 carried at least one acquired antimicrobial resistance gene. When compared to a database of publicly available ST314, four distinct clades were identified (clades I-IV), with the majority of isolates from Ireland clustering together in Clade I. Two of the three ST198 isolates were characteristic of those originating outside of the Americas (Clade ST198.2), while one was distantly clustered with isolates from South and North America (Clade ST198.1). The genomes of the two clade ST198.2 isolates encoded Salmonella Genomic Island 1 (SGI1), were multidrug-resistant and encoded polymorphisms in the DNA gyrase (gyrA) and DNA topoisomerase (parC) known to confer resistance to fluoroquinolones. The single ST152 isolate was from raw beef, clustered with isolates from food and bovine sources in North America and was pan-susceptible. Results of this study indicate that most S. Kentucky isolates from non-human sources in Ireland are closely related ST314 and only a few isolates are antimicrobial-resistant. This study also demonstrates the presence of multidrug-resistant ST198 in food sources in Ireland.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Salmonella enterica , Animales , Antibacterianos/farmacología , Bovinos , Perros , Farmacorresistencia Bacteriana Múltiple/genética , Microbiología de Alimentos , Genómica , Irlanda/epidemiología , Pruebas de Sensibilidad Microbiana/veterinaria , Aves de Corral , Salmonella , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Serogrupo , Ovinos , Porcinos
9.
Ir Vet J ; 73: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082542

RESUMEN

BACKGROUND: Dairy and beef cattle can be reservoirs of many pathogens, including Salmonella and Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD). Farm environments may provide potential entry points for the transmission of infectious agents into the food chain. Antibiotics are used to treat a wide variety of infections on farms, and administration of antimicrobial agents to cattle is considered to be a driving factor for antimicrobial resistance (AMR). Control of JD and AMR are priority for animal health initiatives in Ireland. A national JD pilot programme was introduced by Animal Health Ireland in 2014, while the national action plan launched by Department of Health and Department of Agriculture, Food and Marine introduced in 2017 aims to improve the surveillance of AMR. The current investigation was undertaken as a pilot study to determine the proportion of herds positive for MAP, Salmonella species (Salmonella spp), commensal Escherichia coli (E. coli), Extended-spectrum beta-lactamase (ESBL) AmpC ß-lactamase and carbapenemase-producing E. coli from 157 environmental faecal samples in Irish farms. RESULTS: MAP was detected in 10.2% of samples collected; on culture in 4 (4.9%) of the dairy herds and from 1 (1.3%) of the beef/suckler herds, and by PCR in 10 (12.3%) and 6 (7.9%) of these herds respectively. All culture positive herds were also positive by PCR. An additional 11 herds were positive by PCR only. Salmonella was not detected, while commensal E. coli were isolated from 70.7% of the samples (111/157) with 101 of these isolates shown to be fully susceptible to all antimicrobials tested. Of the 27 presumptive ESBL AmpC ß-lactamase producing E. coli detected, one isolate was resistant to ten antimicrobials, nine isolates were resistant to nine antimicrobials, and four isolates were resistant to eight antimicrobials. Carbapenemase-producing E. coli were not isolated. CONCLUSIONS: The results highlight the importance of monitoring farm environments for Johne's disease. This disease is a growing concern for dairy and beef producers in Ireland, and sampling the farm environment may offer a useful means to rapidly screen for the presence of MAP. Non-pathogenic common enteric commensal and multiple-drug-resistant E. coli may contribute to AMR acting as a reservoir and transferring resistance to other species/pathogens in the environment.

10.
Wellcome Open Res ; 5: 223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614977

RESUMEN

Background: Most publicly available genomes of Salmonella enterica are from human disease in the US and the UK, or from domesticated animals in the US. Methods: Here we describe a historical collection of 10,000 strains isolated between 1891-2010 in 73 different countries. They encompass a broad range of sources, ranging from rivers through reptiles to the diversity of all S. enterica isolated on the island of Ireland between 2000 and 2005. Genomic DNA was isolated, and sequenced by Illumina short read sequencing. Results: The short reads are publicly available in the Short Reads Archive. They were also uploaded to EnteroBase, which assembled and annotated draft genomes. 9769 draft genomes which passed quality control were genotyped with multiple levels of multilocus sequence typing, and used to predict serovars. Genomes were assigned to hierarchical clusters on the basis of numbers of pair-wise allelic differences in core genes, which were mapped to genetic Lineages within phylogenetic trees. Conclusions: The University of Warwick/University College Cork (UoWUCC) project greatly extends the geographic sources, dates and core genomic diversity of publicly available S. enterica genomes. We illustrate these features by an overview of core genomic Lineages within 33,000 publicly available Salmonella genomes whose strains were isolated before 2011. We also present detailed examinations of HC400, HC900 and HC2000 hierarchical clusters within exemplar Lineages, including serovars Typhimurium, Enteritidis and Mbandaka. These analyses confirm the polyphyletic nature of multiple serovars while showing that discrete clusters with geographical specificity can be reliably recognized by hierarchical clustering approaches. The results also demonstrate that the genomes sequenced here provide an important counterbalance to the sampling bias which is so dominant in current genomic sequencing.

11.
Int J Food Microbiol ; 166(1): 48-53, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23827807

RESUMEN

Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Reacción en Cadena de la Polimerasa Multiplex/normas , Salmonella typhimurium/genética , Antiinfecciosos/farmacología , Tipificación de Bacteriófagos , Pruebas de Sensibilidad Microbiana , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/aislamiento & purificación , Sensibilidad y Especificidad , Serotipificación , Especificidad de la Especie
12.
Int J Food Microbiol ; 144(3): 519-27, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21115208

RESUMEN

This study aimed to investigate verocytotoxigenic Escherichia coli O157 in the largest beef and sheep slaughter plants in Ireland over a one-year period. Samples consisted of pooled rectal swabs (n=407) and pooled carcass swabs (n=407) from 5 animals belonging to the same herd or flock and minced meat (n=91) from the same sampling date. E. coli O157 isolates were characterised using PCR for a range of genes, i.e. 16S, rfbE, fliC, vtx1, vtx2, eaeA and confirmed VTEC O157 isolates were tested for antimicrobial susceptibility and typed using Pulsed-Field Gel Electrophoresis (PFGE) and Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). VTEC O157 was isolated from 7.6% and 3.9% of bovine rectal and carcass swab samples and from 5.8% and 2.9% of ovine rectal and carcass swab samples respectively. None of the bovine minced meat samples (n=77) and only one of the 14 ovine minced meat samples was positive for VTEC O157. Following PFGE and MLVA, cross contamination from faeces to carcasses was identified. While PFGE and MLVA identified the same clusters for highly related strains, MLVA discriminated better than PFGE in addition to being more rapid and less labour intensive. Results showed that cattle and sheep presented for slaughter in Ireland harbour VTEC O157, and although the levels entering the food chain are low, this should not be overlooked as possible sources of zoonotic infection; molecular typing was able to demonstrate relationships among strains and could be used to elucidate the sources of human infection.


Asunto(s)
Mataderos , Electroforesis en Gel de Campo Pulsado , Escherichia coli O157/genética , Microbiología de Alimentos , Carne/microbiología , Repeticiones de Minisatélite , Animales , Antiinfecciosos/farmacología , Bovinos , Escherichia coli O157/clasificación , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/aislamiento & purificación , Irlanda , Pruebas de Sensibilidad Microbiana , Filogenia , Recto/microbiología , Ovinos
13.
J Food Prot ; 72(2): 274-85, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19350972

RESUMEN

This risk assessment study aimed to estimate the prevalence of Salmonella on pig carcasses and pork joints produced in slaughterhouses, on the basis that within groups of slaughter there is a strong association between the proportion of Salmonella-positive animals entering the slaughter lines (x) and the resulting proportion of contaminated eviscerated pig carcasses (y). To this effect, the results of a number of published studies reporting estimates of x and y were assembled in order to model a stochastic weighted regression considering the sensitivities of the diverse Salmonella culture methods. Meta-analysis was used to assign weights to the regression and to estimate the overall effect of chilling on Salmonella incidence on pig carcasses. The model's ability to produce accurate estimates and the intrinsic effectiveness of the modeling capabilities of meta-analysis were appraised using Irish data for the input parameter of prevalence of Salmonella carrier slaughter pigs. The model approximated a Salmonella prevalence in pork joints from Irish boning halls of 4.0% (95% confidence interval, 0.3 to 12.0%) and was validated by the results of a large survey (n = 720) of Salmonella in pork joints (mean, 3.3%; 95% confidence interval, 2.0 to 4.6%) carried out in four commercial pork abattoirs as part of this research project. Sensitivity analysis reinforced the importance of final rinsing (r = -0.382) and chilling (r = -0.221) as stages that contribute to reducing considerably the occurrence of Salmonella on the final product, while hygiene practices during jointing seemed to moderate only marginally the amount of contaminated pork joints. Finally, the adequacy of meta-analysis for integrating different findings and producing distributions for use in stochastic modeling was demonstrated.


Asunto(s)
Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Medición de Riesgo , Salmonella/aislamiento & purificación , Porcinos/microbiología , Animales , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Humanos , Higiene , Prevalencia , Salmonella/crecimiento & desarrollo , Sensibilidad y Especificidad , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...